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Some consequences of non-orthogonality of the basic functions of LCAO approximation, on the 
relations used for calculations of hyperfine splittings in ESR spectra of conjugated radicals, are 
discussed. Special attention has been paid on the problem of transferability of the hyperfine coupling 
constants. The discussion is illustrated by some calculations of the hyperfine splittings for radical-ions 
of naphthalene, and tetracene. 

Einige Folgerungen aus der Nichtorthogonalitiit der Basis in der LCAO-N~iherung fiir die Be- 
ziehungen, die ftir die Berechnung der Hyperfeinanfspaltung im ESR-Spektrum konjugierter Radikale 
benutzt werden, werden untersucht. Insbesondere wird die Frage der Ubertragbarkeit der Hyperfein- 
kopplungskonstanten behandelt. Die Diskussion wird durch einige Berechnungen der Hyperfein- 
aufspaltung ftir die Radikalionen des Naphtalins und des Tetracens erg~inzt. 

It is well known  that  the isotropic hyperfine structure of  ESR spectra of 
conjugated hyd roca rbon  radicals is due to the Fermi  contact  interaction between 
unpaired electron spin and the nuclear spins of pro tons  adjacent  to the conjugated 
ca rbon  atoms. According to McConnel l  [1], the hyperfine splitting all,, generated 
by the interaction of  electron spin with the spin of  a p ro ton  bonded  to the carbon 
a tom c~, can be in a rough  approx imat ion  expressed as 

aH~ = constant  x [qS(CH) ~ q0 o [Cpo qS(ci~), ] . (1) 

In  the molecular  exchange integral written above, q~(cu)~ and 4~(cn), are the bonding  
and ant ibonding localized orbitals, respectively, of the C ~ - H  bond  under  
consideration, (Po is the singly occupied ~z-electronic molecular  orbital. After 
in t roducing the L C A O  approx imat ion  

(Po = ZCo = ~ )~, C~o, 
# 

we obtain  the relation (1) in the following matrix form: 

all= = Tr (G n" Q) .  (2) 

G n~ is a matrix of  hyperfine coupl ing constants,  having the elements 

G,~ ~ = constant  x (~b~cn)~Z" IZv qS~cm*~) - (3) 
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Q is the matrix representation of the spin density operator in the atomic orbital 

basis Z, Q = Co C~ 

(the ground state of the radical is well described by the single-determinantal 
wavefunction). 

In semiempirical schemes there are several possibilities of approximations 
concerning the structure of the hyperfine coupling matrix G r~. In the simplest 
case these matrices can be reduced to single elements, G~ " = G (for any ~). This 
approximation will be further referred to as approximation I: 

Gnu(t) {G #=v=~, 
uv = 0 otherwise. (4) 

Then the general formula (2) takes the form: 

(t) G Q~ (5) au~ = 

where the protonic coupling constant G can be treated as a transferable empirical 
parameter, characterizing some properties of C - H  bond in conjugated radicals. 
The approximation I means that, among the integrals (3), only those of the type 
(~b~cn)~Z~l;g~b~cn),) have the values considerably different from zero. Therefore, 
in a better approximation we can assume a common non-zero value also for 
integrals of the type (qS(cn),Z~lZ~b~b(cn),), where % designates any conjugated 
carbon atom bonded to the atom ~. This approximation, referred to here as 
approximation II, can be written in the following way: 

~v - # = ~ ,  V=~b or v=c~, # = % .  (6) 

otherwise. 

In this case we obtain from (2) the relation 

a~ = G Q~ + 2 9 Q~b (7) 

(we introduce a shorthand notation Q~b- ~ Q~@. 
(b) 

In semiempirical methods the eigenvalue problem determining molecular 
orbitals is practically always formulated in some orthogonalized basis, but not 
in the original (non-orthogonal) atomic orbital basis Z. The L/Swdin-Ortho- 
gonalized'Atomic Orbitals (LOAO) [2] 

2 = ~ S  -~, where S~v=()~lZ~>, 

are most frequently (but often implicitly) used, especially in the PPP-type methods, 
e.g. I-3]. Then, from the eigenvalue problem one obtains the eigenvectors (Z)C~, 
connected with the original LCAO vectors C~ by the formula: 

~)C~ = S ~ C~, 

and after that the spin density matrix in the 2 basis is constructed as it follows: 

(z~Q = ~Z~Co (Z~C;-. 

25* 
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The general formula (2) can obviously be written in the equivalent form: 

aH~ = T r  ((;0GH= (-~)Q), 

where 

~)Q = S ~ Q S § 

and 

(8) 

Usually, the hyperfine splittings are calculated from (8) by considering the matrix 
elements of (~)Q and making approximations either of the Type I (4) or II (6) on 
the matrices (X)G H', but not on G H'. In this way one obtains the well known relation 
of McConnell (M) [1] 

a M __ (z) G (Z)Q~ (9) 

and that of Giacometti, Nordio, and Pavan (GNP) [4]: 

aGNP _ ( ; 0 ~  (g)t) -t- 2 (Z)g tZ)Q~b. (10) 

It should be noted that the validity of the relations M (9) and GNP (10) is not 
justified by the same arguments as those leading from (2) either to (5) or to (7), 
because the "coupling constants" (~)G and (4) 9 are expressible by integrals of the 
type (3), but containing the multicenter orthogonalized orbitals it instead of 
localized orbitals 

(e.g. (x)a - ( ' t )aH~ ~ (q~(CH)~'~ [~a q~(CH)*)) 
- -  = - - G t G t  

For these reasons the quantities (X)G and (X)g cannot be treated, in principle, 
as transferable empirical parameters. On the other hand, the relations M, and 
especially GNP, with transferable "coupling constants" are known as rather 
effective ones. This point will be further discussed in more detail. 

It is well established experimentally that the total width of ESR spectrum is 
approximately constant for several classes of conjugated radicals, e.g. for radical- 
ions of poliacenes. This fact is in agreement with the M relation, since: 

Tr(X)Q = 1. 

Due to this equation the diagonal elements of (Z)Q are usually called "spin densities 
on the conjugated atoms." This interpretation does not seem to be the most 
appropriate one, because the quantities defined in the basis it cannot be treated 
as having the local properties. Moreover, it should be noticed that neither the 
diagonal elements of Q can be treated as the "spin densities", because in general 

T r Q r  1. 

Some insight into the consequences of non-orthogonality of the atomic orbital 
basis Z on the calculations of hyperfine splittings can be achieved in the following 
way. We can split the hyperfine coupling matrix into the diagonal part G H" and 
the off-diagonal one, GH': 

GH~ n~ H~ (11) = G  O + G  1 , 
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where 
H~ H~ H~ H~ G0,uv = Gu~ 6u~, Ga,u~ = Guy (1 - 6.v) ; 

analogously, we can do the same with the overlap matrix S: 

S = I + S 1 .  

Let us introduce the following matrix: 

- y (Go $1 + S1Gon=), (12)  

having the diagonal elements equal to zero and the off-diagonal ones of the form: 

~H~ - -  H~ 1 H~ H~ 6 ~  - 6 .v  - ~ s ~ v ( 6 . .  + 6 ~ ) .  (13) 

One can easily show the identity 

(Z)GH~=�89189189 +S~Go~S~ H -~) 
-~  ~ n  ~ - ~  (14) 

Substituting (14) into (8) we obtain 

an~ = Tr (Gon~ q) + R~, (15) 

where 

= ~ ( O s  + s o ) ,  (16) 

and the "remainder" R~ can be written as follows: 

R~ = Tr(S-}t~H=S -~ (a)Q) = Tr((~ H= Q). (17) 

If one wishes to preserve the concept of "spin densities on conjugated atoms" 
it seems that the diagonal elements of q (16) are the most convenient quantities 
for giving them such interpretations. Let us note that the definition (16) is analogous 
to Mulliken's well-known definition of the atomic population [5], and that the 
matrix q has the correct trace: 

Trq = 1. (18) 

Moreover, when the approximations either I or II are introduced, (15) leads to 

a(A) G q ~  + R~ a) (A = I, II) (19) H~ ~- 

Hence, if we have some arguments to consider R~ a) as a small quantity, we obtain 
the McConnell's type relation with transferable coupling constants. In this case, 
due to (18), we are still in agreement with the above mentioned experimental fact 
of approximate constancy of the total width of the ESR pattern; it is also evident 
that ~, R~ is responsible for deviations from this constancy. 

c~ 

Let us discuss the magnitude of the "remainder" R~ a) in more detail. When 
starting from the second part of (17), applying approximation I and neglecting 
the overlap integrals between non-nearest neighbours, we have 

RJ ~ ~- - G S Q~b, (20) 
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where S is the average value of the overlap integrals between adjacent carbon 
atoms. Analogously, in approximation II we have 

R(~ '') ~- 2(g - �89 G S)Q~b . (21) 

The generally accepted estimations for the values of coupling constants, e.g. [4, 6] 
(referring, in principle, to the values of (~)G and (~)g) indicate that the constants G 
and g are of the same sign, and the ratio Gig is in the range 5-6. Taking into 
account the average value of S--0.3 we can estimate the term - G S  as a relatively 
large one, whereas the term 2(g - �89 GS) should be much smaller. It means that the 
quantity G q~ differs considerably from a(I)= G Q~ = G q~ + R(~ I), being at the 
same time quite close to a ~ = G Q ~ + 2 9 Q ~ b = G q ~ + R ( ~  Il). Therefore, we can 
expect the values of G q~ to interpret the experimental hyperfine splittings in a 
reasonable way, because approximation II seems to be physically better justified 
than approximation I. 

On the other hand, the "remainder" R~ can be discussed formally in terms of 
the power series in $1 matrix, by using the expansion 

R~=R~, 0 + R~, 1 + R~, 2 + . . . .  

Considering the presence of $1 in the definition (12) of ~n,, expanding S -~ in the 
usual way 

3 2 . . . .  S - ~ = I - � 8 9  + g S 1  

and starting from the first part of (17), we obtain: 

R~,o = Tr(G~ ~ (;0Q), 

R=,, = - Tr IS 1 (Go n~ + G1 n~) Ca)Q], 

Let us consider R=, o. The application of approximations either I or II gives, 
respectively: 

R(~) ~ , v  ~ 0  , 

R(n) (22) 
~,o = 2 g  ( '~)Q~b �9 

It can be easily shown that (Z)Q and q differ in terms of the order S~. Therefore, 
in the zeroth order of approximation we can write: 

= ~ ( I )  a(ll_l), o Gq~,~,+K~,,o'~G(X)Q~,~,=-ar~,, 
(23) 

= - -  a G N P  .(n) ~ G (~)Q~, + 2 9 (;qQ~b = n~ a~,o  Gq~  + aX~,o 

In this way we have obtained the M and G N P  relations with transferable coupling 
constants. However, the derivation (23) of both of the relations should be regarded 
with caution, for the terms of the first, or even of the second orders in S~ can be 
relatively large,-and therefore a(A],0 can be a rather poor  approximation to a(n A] 
(with the same coupling constants used in both relations). In particular, as we 
have shown before, Gq~  ~ G (Z)Q~ is significantly different from a~) but it should 
be relatively close to a~ x). Obviously, the M and G N P  relations can be obtained 
directly from (8) by application of the power series expansions to (Z)G n~ and (a)Q, 
but it seems to us that the way of reasoning presented here gives a slightly better 
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insight into the structures of approximations involved in calculations of the 
hyperfine splittings. 

In order to illustrate the discussion presented above, we have calculated the 
matrices Q, (~)Q, and q, as well as the hyperfine splittings, for radical-ions of 
naphthalene, anthracene, and tetracene. All these results are collected in the 
Table 1. Molecular orbitals have been determined from the modified semi- 
empirical SCF LCAO method 1-7, 8], formulated in the way which takes 'fully 
into account the non-orthogonality of atomic orbital basis in the form of the Fock 
matrix. The details concerning the values of empirical parameters used are 
unimportant in our discussion except for the average values of overlap integrals 
between nearest neighbours, S = 0,333 ; further details will be given elsewhere [9]. 

The important effect obtained as a result of the method applied here is a 
breaking of the well known pairing properties of molecular orbitals of anions and 
cations of the same alternant system, e_g. [10]. In particular, the diagonal matrix 
elements of (Z)Q for anions and cations have different values on the corresponding 
positions (see the 5 th column of the Table 1). Obviously, the similar effect can be 
observed for the corresponding elements of Q and q (see the columns: 3rd and 
7th). 

In order to calculate the hyperfine splittings, the values of coupling constants 
have been determined by minimalization of the standard error for the relation 
considered: 

O" V ~  pc~( calc" ~-exp.,2 = aH~ -- (24) ~H~ ! " 

The summation in (24) is extended on the set of all the 16 hyperfine splitting 
constants appearing in the ESR spectra of the systems investigated; ~xp. is the 
arithmetic mean of the experimental values quoted in the columns 9-11 of the 
Table 1. The statistical weight p~ is proportional to the multiplicity of a given 
splitting in the ESR pattern of the system investigated, renormalized according 
to the condition ~ p~ = 1. 

At first, the validity of approximation I has been checked. The relation (5) 
with optimized value of coupling constant (in the manner described above) has 
the form 

a(H[) = -- 24,36 Q~ (25) 

(all the coupling constants and hyperfine splittings are given in gausses). The 
calculated splittings are presented in the 12th column of the Table 1. We note that 
these values are rather in disagreement with the experimental ones, especially for 
the largest splitting; they lead therefore to a considerable value for the standard 
error. It is well-known from experiment that the largest splittings are larger in the 
ESR spectra of cation-radicals than the corresponding splittings in the anion- 
radicals spectra. Unfortunately, our approximation I leads to the opposite 
results. Therefore, we conclude that this approximation is too poor to describe the 
regularities observed in the spectra. 

In the next step, the coupling constants G and g appearing in the relation (7) 
have been commonly optimized and we have obtained 

a~I= ) = - 26.07 Q=~ - 10.40 Q=b. (26) 
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The result for splitting constants are given in the 13th column of the Table 1. 
Now, the standard error is approximately three times smaller than in the former 
case. Moreover, the interpretation of all the splittings is quite satisfactory, in 
particular we observe the correct description of the largest splittings. Therefore, 
approximation II seems to be physically resonable and numerically effective. 
On the basis of the coupling constants optimized here we can estimate more 
precisely the constant values appearing in the formulas (20) and (21) for R (A). 
They are: - G S  = 8.69, 2 ( g -  �89 GS) = - 1.71; so our previous estimation of 
these terms was of correct order. We will treat the relation (26) as a starting point 
for further discussion. 

For an additional check of our conclusions, the hyperfine splittings have also 
been calculated from the relation: 

an~ = G q~, ~- G (Z)Q~ , (27) 

using the optimized G value from our basic relation (26). As one should expect 
the interpretation of the splittings is, at least qualitatively, correct (see the 14th 
column of the Table 1). We can therefore conclude that (27) provides a fairly good 
approximation to (26). In particular, the regularities concerning the largest 
splittings in the radical-anions and -cations are preserved. This is due to the above 
mentioned fact of breaking of the pairing properties; namely, the largest spin 
densities q~, are in our calculations mostly larger for cations than for anions. This 
shows that the proper inclusion of the effects connected with the non-orthogonality 
of the atomic orbital basis into the method determining molecular orbitals [7, 8] 
is of importance in calculations of the spin densities. However, the calculated 
standard error is considerably greater than the corresponding value obtained 
in the case of the basic relation (26). This means that the "remainder" R~ m is still 
non-negligible. It seemed interesting to us, to optimize separately the value of 
coupling constant appearing in (27). The optimum value is -28.87, the hyperfine 
splittings calculated from (27) with this G value can be found in the 15th column 
of the Table 1. The results are surprisingly good, but, of course, they are slightly 
worse than those obtained from (26). Undoubtedly, this optimized G value 
contains some contribution from the "remainder" R~, and, therefore, transferability 
of the value obtained in this way is not quite clear. In any case our calculations 
show that the matrix q (or CX)Q) can be used for reasonable interpretation of ESR 
spectra of conjugated radicals in the framework of the McConnell's type relation. 

Finally, we conclude that the most appropriate way to obtain the correct 
description of the ESR spectra of the radicals is to employ the relation (7) based 
on our approximation II, which involves the matrix Q, being a representation 
of the spin density operator in the basis of "true" atomic orbitals Z. This matrix 
can be easily obtained from the matrix ~X)Q (being the usual output of semi- 
empirical calculations) by the transformation 

Q = S  ~CZ)QS-~. 

It is also important to determine the molecular orbitals by the method which 
takes consequently into account the non-orthogonality of the basic atomic 
orbitals. 
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